Installation of the radio monitoring system at Yebes observatory

D. Cordobés, José A. López-Pérez, P. García-Carreño, F. Beltrán, C. Almendros

IT CDT 2016 - 16
Revision history

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Author</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>13.07.2016</td>
<td>D. Cordobés</td>
<td>First version</td>
</tr>
<tr>
<td>1.1</td>
<td>15.07.2016</td>
<td>José A. López-Pérez</td>
<td>Some comments added</td>
</tr>
</tbody>
</table>
Contents

1 System description 4

2 Cabling 6

3 Antenna Control Unit 6

4 Antenna pointing correction 10

5 Accon configuration 11

6 System integration 12

7 Preliminary measurements 13

8 Conclusions 15

Appendix I - System specifications 16

Appendix II – Antenna control unit source code 19
1 System description

A radio monitoring system has been recently installed at the roof of the Centro Astronómico de Yebes (CAY) lab and office building on June 2016, with WGS84 coordinates 40° 31’28.50” N / 03° 05’ 18.95” W. Its purpose is to measure the amount of radio frequency interfering (RFI) signals that reach the observatory site. The system is capable of monitoring signals from 1 to 40GHz, with horizontal or vertical polarization, rotating from 0 to 360° in azimuth, at 5° per second, and -4.5° to +94.5° in elevation, at 2° per second.

The system is composed of the following equipment:

- Rohde-Schwarz AC090 SHF Directional Antenna System, which is a 0.9 m in diameter parabola.
- Rohde-Schwarz HL024S7, which consists of a crossed log-periodic antenna, working as the feed for the parabola, and a broadband preamplifier. It covers the 1 - 18 GHz band.
- Rohde-Schwarz AC308R2 SHF directional antenna with preamplifier, covering the 18 - 26.5 GHz band. It is a 25 cm in diameter parabola.
- Rohde-Schwarz AC308R3 SHF directional antenna with preamplifier, covering the 26.5 - 40GHz band. It is a 25 cm in diameter parabola, too
- Wilhelm Winter antenna rotator
- Rohde-Schwarz GX300 & GV300 control unit for positioning and selecting the antenna, and its associated frequency band, and its polarization. It can be controlled via serial RS-232C or RS-485, alternatively.

This system was donated by the Spanish Dirección General de Telecomunicaciones y Tecnologías de la Información to Yebes Observatory, where it has been restored and installed as mentioned above.

The complete detailed specifications can be found in Appendix I. The block diagram and the connections of the system is shown in Figure 1 and the final assembly in Figure 2.
System description

Figure 1: Block diagram of the system.

Figure 2: Installed radio monitoring system.
2 Cabling

The cabling of the system has been done between the receiver laboratory, in the first floor of the building, and the roof, consisting of:

- Power supply cable
- 3 wire RS485 cable
- RG-58 cable

The length of the cable is 36 meters, approximately. The host PC is connected to the RS-485 cable through a BlackBox© IC821A RS232 to RS485 converter.

The connection pin-out between the X1 connector of the GX300 module and the BlackBox is the following:

<table>
<thead>
<tr>
<th>X1</th>
<th>BlackBox</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin G (RS485+)</td>
<td>TDB+</td>
</tr>
<tr>
<td>Pin H (RS485-)</td>
<td>TDA-</td>
</tr>
<tr>
<td>Pin J (GND)</td>
<td>GND</td>
</tr>
</tbody>
</table>

3 Antenna control unit

The antenna is shipped with a Microsoft Windows controlling software called Accon, from Rohde & Schwarz (RS). According to RS, this software can be externally controlled through the Dynamic Data Exchange (DDE) Microsoft Windows protocol, which has been partially superseded by Object Linking and Embedding (OLE), but remains used for simple Windows interprocess communication tasks. Rohde & Schwarz also provides a list of DDE commands to which Accon responds.

The programming language chosen for building an application to interact with Accon has been Visual Basic, and as DDE is no longer supported in Visual Studio (the successor of Visual Basic), all the coding was done in Visual Basic 5.0. Additionally, the application implements UDP socket communication, so it can be remotely controlled through the LAN/Ethernet. The interface diagram of the software is shown in Figure 3 and the graphical user interface of the CAY antenna control unit (ACU) application is presented in Figure 4.
Figure 3: Software interface diagram.

Figure 4: CAY R&S AC090 Antenna Control Unit
Antenna Control Unit

In order to be controlled by DDE, the Accon Software has to be configured according to Figure 5. Likewise, in the Visual Basic application there have to be two text boxes named \textit{cmdSent} and \textit{cmdReceived}, which will act as the output and input to the Accon software, respectively. The \textit{linkmode} and \textit{linktopic} fields of the Visual Basic graphical user interface have also to be defined the following way:

Linkmode: 1-Source

Linktopic: Form1

The Visual Basic application has to be compiled and built into an executable file named \textit{ac090.exe}.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{accon_dde_setup.png}
\caption{Accon DDE setup}
\end{figure}

The CAY antenna control unit software can be externally controlled through UDP datagram sockets. The list of commands is shown in Table 1. The code of the Visual Basic application is shown in Appendix II.
<table>
<thead>
<tr>
<th>UDP COMMAND</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>STOPS THE ROTATOR</td>
</tr>
<tr>
<td>QA</td>
<td>RETURNS AZIMUTH POSITION [AAA,AA]</td>
</tr>
<tr>
<td>QE</td>
<td>RETURNS ELEVATION POSITION [EE,EE]</td>
</tr>
<tr>
<td>QB</td>
<td>RETURNS POSITION [AAA,AA/EE,EE]</td>
</tr>
<tr>
<td>QFn</td>
<td>RETURNS DESIGNATION OF FEED n AS PLAIN TEXT. n possible values: 1 2 3</td>
</tr>
<tr>
<td>QS</td>
<td>RETURNS SYSTEM DESIGNATION AS PLAIN TEXT</td>
</tr>
<tr>
<td>QR</td>
<td>QUERY ROTATOR STATUS. Possible values: L: rotator is decreasing azimuth angle R: rotator is increasing azimuth angle U: rotator is increasing elevation angle D: rotator is decreasing elevation angle H: rotator is standing still The following combinations are possible: LD, LU, RD, RU</td>
</tr>
<tr>
<td>QL</td>
<td>QUERY STATUS OF THE LIMIT SWITCHES. Possible values: L: left limit switch triggered R: right limit switch triggered D: lower limit switch triggered U: upper limit switch triggered N: no limit switch triggered</td>
</tr>
<tr>
<td>C</td>
<td>CLEARS LAST FEEDBACK MESSAGE</td>
</tr>
<tr>
<td>E</td>
<td>TERMINATES THE PROGRAM</td>
</tr>
<tr>
<td>F1BX</td>
<td>BYPASS FEED 1 AMPLIFIER. X possible values: 0: don’t bypass amplifier 1: bypass amplifier</td>
</tr>
<tr>
<td>F1PX</td>
<td>SETS THE POLARIZATION OF FEED 1. X possible values: V: Vertical polarization H: Horizontal polarization</td>
</tr>
<tr>
<td>SETPOS AAA,A/EE,E</td>
<td>SETS THE ANTENNA POSITION AAA,A : Desired Azimuth [Deg]. Range 0° to 360° EE,E: Desired Elevation [Deg]. Range -4.5° to 94.5° Example: SETPOS 008,5/+50,6 takes the antenna to Azimuth 8,5° and Elevation 50,6°</td>
</tr>
</tbody>
</table>
4 Antenna pointing correction

In order to know the azimuth offset correction that has to be applied to the antenna, a pair of radiolinks from known directions were used:

- 6.46 GHz coming from 27° azimuth (Horche)
- 5.85 GHz coming from 314° azimuth (Chiloeches)

Taking into account these azimuths, the offset correction for the antenna was derived (see Figure 6). The measurements are presented in Section 7.
5 Accon configuration

In the following figures, it can be seen the system setup and how the Accon software has to be configured to communicate with the antenna:

Figure 6: Accon pointing offset corrections

Figure 7: Accon system setup
System integration

The Antenna Control Unit software and the Accon program have been installed in a HP DC7100 PC connected to a rack mountable Aaeon AMB screen. On top of them has been placed a spectrum analyzer which will receive and analyze the output signals from the antenna. The system has been mounted in a 19” rack (Figure 9).
7 Preliminary measurements

In order to characterize the system and guess the antenna pointing offset correction to be applied (see Section 5), some measurements of already known radiolinks that reach the observatory site were made. The results are presented in Figures 10 and 11.
Preliminary measurements

Figure 10: Radiolink coming from azimuth 27°

Figure 11: Radiolink coming from azimuth 314°
8 Conclusions

A radio frequency interference monitoring system has been set up on the roof of the Centro Astronómico de Yebes for the monitorization of disturbing radio signals, as described in this report.

The system is now ready to start operation, except for the installation of a low-loss coaxial cable to carry the antenna output signal from the roof to the spectrum analyzer in the laboratory, which is expected to be installed in the next few months. Then, the system will be fully operational and will start with RFI detection and monitoring.
Appendix I – System specifications

<table>
<thead>
<tr>
<th>Antenna</th>
<th>R&S®AC308R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>18 GHz to 26.5 GHz</td>
</tr>
<tr>
<td>Polarization</td>
<td>H, V or 45 °, depending on installation</td>
</tr>
<tr>
<td>Nominal impedance</td>
<td>50 Ω</td>
</tr>
<tr>
<td>VSWR</td>
<td><2</td>
</tr>
<tr>
<td>Gain</td>
<td>29dBi to 33 dBi</td>
</tr>
<tr>
<td>Half-power beamwidth</td>
<td>4.5 ° to 3 °</td>
</tr>
<tr>
<td>Reflector diameter</td>
<td>250 mm</td>
</tr>
<tr>
<td>Connector</td>
<td>K female</td>
</tr>
</tbody>
</table>

Preamplifier

Gain	28 ±2 dB
1 dB compression point	≥+8 dBm
Noise figure	<3 dB
Power consumption	+15 V/0.2 A
Operating temperature range	−20 °C to +50 °C
Dimensions (diameter x length)	approx. 380 mm x 300 mm
Weight	approx. 2.5 kg
Appendix I – System specifications

<table>
<thead>
<tr>
<th>Antenna</th>
<th>R&S® AC308R3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>26.5 GHz to 40 GHz</td>
</tr>
<tr>
<td>Polarization</td>
<td>H, V or 45°, depending on installation</td>
</tr>
<tr>
<td>Input impedance</td>
<td>50 Ω</td>
</tr>
<tr>
<td>VSWR</td>
<td><2</td>
</tr>
<tr>
<td>Gain</td>
<td>33 dBi to 36 dBi</td>
</tr>
<tr>
<td>Half-power beam width</td>
<td>3 ° to 2 °</td>
</tr>
<tr>
<td>Reflector diameter</td>
<td>250 mm</td>
</tr>
<tr>
<td>Connector</td>
<td>K female</td>
</tr>
</tbody>
</table>

Preamplifier

Gain	28 ±2 dB
1 dB compression point	≥+8 dBm
Noise figure	<4 dB
Power consumption	+15 V/0.2 A
Operating temperature range	–20 °C to +50 °C
Dimensions (diameter × length)	approx. 380 mm × 300 mm
Weight approx.	2.5 kg
Antenna Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenna</td>
<td>HL024S7</td>
</tr>
<tr>
<td>Frequency range</td>
<td>26.5 GHz to 40 GHz</td>
</tr>
<tr>
<td>Input impedance</td>
<td>50 Ω</td>
</tr>
<tr>
<td>VSWR</td>
<td><2.5</td>
</tr>
<tr>
<td>Gain (without polarization switch/preamplifier)</td>
<td>>6 dBi</td>
</tr>
<tr>
<td>Noise figure</td>
<td>≤3 dB</td>
</tr>
<tr>
<td>Gain (active network – can be switched on)</td>
<td>26 dB ± 2 dB</td>
</tr>
<tr>
<td>1 dB compression point</td>
<td>approx. +8 dBm</td>
</tr>
<tr>
<td>Power supply</td>
<td>+15 V DC (max. 0.3 A)</td>
</tr>
<tr>
<td>Connector</td>
<td>SMA female</td>
</tr>
<tr>
<td>Control connector</td>
<td>10-contact, round, male</td>
</tr>
<tr>
<td>MTBF</td>
<td>>100,000 h</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>-30 °C to +55 °C</td>
</tr>
<tr>
<td>Dimensions (diameter × height)</td>
<td>approx. 210 mm × 390 mm</td>
</tr>
<tr>
<td>With radome</td>
<td>approx. 1 kg</td>
</tr>
</tbody>
</table>
Private globalStop As Integer, socket_flag As Integer

Private Sub stopButton_Click()
 cmdSent.text = "H"
 globalStop = 1
End Sub

Private Sub qEl_Click()
 cmdSent.text = "QE"
End Sub

Private Sub qPos_Click()
 cmdSent.text = "QB"
End Sub

Private Sub qSys_Click()
 cmdSent.text = "QS"
End Sub

Private Sub cButton_Click()
 cmdSent.text = "C"
End Sub

Private Sub azDecrease_Click()
 cmdSent.text = "SL"
End Sub

Private Sub elIncrease_Click()
 cmdSent.text = "SU"
End Sub

Private Sub azIncrease_Click()
 cmdSent.text = "SR"
End Sub

Private Sub elDecrease_Click()
 cmdSent.text = "SD"
End Sub

Private Sub qRotor_Click()
 cmdSent.text = "QR"
End Sub

Private Sub qAz_Click()
 cmdSent.text = "QA"
End Sub
Private Sub CheckBox1_Click()
 If CheckBox1.Value = 1 Then
 cmdSent.text = "F1B1"
 WaitSeconds (2)
 cmdSent.text = "F1X1"
 WaitSeconds (2)
 Else
 cmdSent.text = "F1B0"
 WaitSeconds (2)
 cmdSent.text = "F1X1"
 WaitSeconds (2)
 End If
End Sub

Private Sub Combo1_Click()
 If Combo1.text = "V" Then
 cmdSent.text = "F1PV"
 WaitSeconds (2)
 cmdSent.text = "F1X1"
 WaitSeconds (2)
 ElseIf Combo1.text = "H" Then
 cmdSent.text = "F1Ph"
 WaitSeconds (2)
 cmdSent.text = "F1X1"
 WaitSeconds (2)
 End If
End Sub

Private Sub setPosButton_Click()
 Call Position_ant(enterAz.text, enterEl.text)
End Sub

Private Sub sweepAz_Click()
 Call Sweep_ant_az(startAz.text, endAz.text, fixedEl.text, stepAz.text, intTimeAz.text, AzDirection.text)
End Sub

Private Sub sweepEl_Click()
 Call Sweep_ant_el(startEl.text, endEl.text, fixedAz.text, stepEl.text, intTimeEl.text)
End Sub

Public Sub WaitSeconds(intSeconds As Integer)
 ' Waits for a specified number of seconds
Appendix II – Antenna control unit source code

' Params : intSeconds Number of seconds to wait

Dim datTime As Date

datTime = DateAdd("s", intSeconds, Now)

Do
 DoEvents
 Loop Until Now >= datTime

End Sub

Public Sub Command_ant(angleAz As String, angleEl As String)

Do While 1 'Wait until the rotator stops
 cmdSent.text = "C"
 WaitSeconds (1)

 cmdSent.text = "QR"
 WaitSeconds (1)

 If (StrComp(cmdReceived.text, "H") = 0) Then
 WaitSeconds (1)
 Exit Do
 End If

Loop

If globalStop = 0 Then
 cmdSent.text = "P" & "+" & angleAz & "/" & angleEl
 WaitSeconds (3)
End If

End Sub

Public Sub Sweep_ant_az(startAz As String, stopAz As String, elevation As String, stepAz As String, integTime As String, direction As String)
Appendix II – Antenna control unit source code

Dim angleAz As String, i As Integer, stepAzint As Integer, ini_pos As Integer, end_pos As Integer

cmdSent.text = "H"
WaitSeconds (2)
globalStop = 0
i = 0

stepAzint = CInt(stepAz)

If Abs(CInt(startAz) - CInt(stopAz)) Mod CInt(stepAz) <> 0 Then

 If socket_flag = 1 Then
 sock_send.SendData "STEP_ERROR" "The step doesn’t match"
 Else: MsgBox "STEP_ERROR"
 End If

 Exit Sub
End If

Do While 1

 cmdSent.text = "QA"
 WaitSeconds (1)
 ini_pos = CInt(cmdReceived.text)

 If direction = "0" Then
 end_pos = CInt(startAz) + stepAzint * i
 ElseIf direction = "1" Then
 end_pos = CInt(startAz) - stepAzint * i
 End If

 If end_pos < 0 Then
 end_pos = end_pos + 360
 ElseIf end_pos > 360 Then
 end_pos = end_pos - 360
 End If

 i = i + 1

 Call Position_ant(CStr(end_pos), elevation)
 WaitSeconds (integTime) 'Integration time

 If (globalStop = 1) Or (end_pos = CInt(stopAz)) Then Exit Do 'Stop the sweep if was called the H command or the sweep finished

 Loop
End Sub

Public Sub Sweep_ant_el(startEl As String, stopEl As String, azimuth As String, stepEl As String, integTime As String)

 Dim i As Integer, stepElInt As Integer, startElInt As Integer, stopElInt As Integer

-22-
Appendix II – Antenna control unit source code

```vba
public Sub Position_ant(angleAz As String, angleEl As String)

Dim ini_pos As Double, end_pos As Double

cmdSent.text = "H" 'Stop the antenna
WaitSeconds (2)
globalStop = 0

cmdSent.text = "QA" 'Check in which azimuth we are
WaitSeconds (1)
ini_pos = CDb(cmdReceived.text)
end_pos = CDb(angleAz)

If CInt(angleEl) > 94.5 Then 'Elevation limits of the antenna: 94.5 and -4.5
    angleEl = "94.5"
ElseIf CInt(angleEl) < -4.5 Then
    angleEl = "-4.5"
End If

For i = ini_pos To end_pos Step stepElInt
    Call Position_ant(azimuth, CStr(i))
    WaitSeconds (integTime) 'Integration time

    If (globalStop = 1) Then Exit For 'Stop the sweep if it was called the H command
Next i

End Sub
```

-23-
If the antenna reaches 172 the limit switches activate so we have to reposition it manually, starting from 0º or 360º

If ((ini_pos >= 0 And ini_pos <= 172) And end_pos > 172) Then
 Call Command_ant("0", angleEl)
 cmdSent.text = "SL"
 WaitSeconds (2)
 cmdSent.text = "H"
 WaitSeconds (2)
End If

If ((ini_pos <= 360 And ini_pos >= 172) And end_pos < 172) Then
 Call Command_ant("360", angleEl)
 cmdSent.text = "SR"
 WaitSeconds (2)
 cmdSent.text = "H"
 WaitSeconds (2)
End If

Call Command_ant(angleAz, angleEl)

If socket_flag = 1 Then
 WaitSeconds (1)
 cmdSent.text = "QB"
 WaitSeconds (1)
 sock_send.SendData "] & cmdReceived.text & "]
End If

End Sub

Private Sub Form_Load()
 Dim res
 sock_receive.LocalPort = 4001
 sock_receive.Protocol = sckUDPProtocol
 sock_receive.Bind sock_receive.LocalPort

 sock_send.Protocol = sckUDPProtocol
 sock_send.RemotePort = 4002

 res = Shell("accon.exe ", vbHide)
 socket_flag = 0

End Sub
Private Sub sock_receive_DataArrival(ByVal bytesTotal As Long)
 Dim str As String, posAz As String, posEl As String, startAz As String, stopAz As String, elevation As String, stepAz As String, intTimeAz As String, directionAz As String
 Dim startEl As String, stopEl As String, azimuth As String, stepEl As String, intTimeEl As String
 sock_receive.GetData str
 sock_receive.GetData str
 sock_receive.GetData str
 'MsgBox bytesTotal
 socket_flag = 1
 formulary.Enabled = False 'Disable the GUI
 rxSockTxt.text = "UDP connection socket from " & sock_receive.RemoteHostIP & vbCrLf & "Command received: " & str
 sock_send.RemoteHost = sock_receive.RemoteHostIP ' Send the data to the IP of the peer host
 If (StrComp(str, "H") = 0) Then
 cmdSent.text = "H"
 globalStop = 1 ' Stop the rotator
 WaitSeconds (0.3)
 ElseIf (StrComp(str, "QE") = 0) Then
 cmdSent.text = "QE"
 WaitSeconds (0.3)
 sock_send.SendData "[" & cmdReceived.text & "]"
 ElseIf (StrComp(str, "QB") = 0) Then
 cmdSent.text = "QB"
 WaitSeconds (0.3)
 sock_send.SendData "[" & cmdReceived.text & "]"
 ElseIf (StrComp(str, "QS") = 0) Then
 cmdSent.text = "QS"
 WaitSeconds (0.3)
 sock_send.SendData "[" & cmdReceived.text & "]"
 ElseIf (StrComp(str, "C") = 0) Then
 cmdSent.text = "C"
 WaitSeconds (0.3)
 ElseIf (StrComp(str, "SL") = 0) Then 'Use it with care as can activate limit switches
 'cmdSent.text = "SL"
 WaitSeconds (0.3)
 ElseIf (StrComp(str, "SU") = 0) Then 'Use it with care as can activate limit switches
 'cmdSent.text = "SU"
 WaitSeconds (0.3)
 ElseIf (StrComp(str, "SR") = 0) Then 'Use it with care as can activate limit switches
 'cmdSent.text = "SR"
 WaitSeconds (0.3)
 End If
End Sub
ElseIf (StrComp(str, "SD") = 0) Then 'Use it with care as can activate limit switches
 cmdSent.text = "SD"
 WaitSeconds (0.3)

ElseIf (StrComp(str, "QF1") = 0) Then
 cmdSent.text = "QF1"
 WaitSeconds (0.3)
 sock_send.SendData "[" & cmdReceived.text & "]"

ElseIf (StrComp(str, "QF2") = 0) Then
 cmdSent.text = "QF2"
 WaitSeconds (0.3)
 sock_send.SendData "[" & cmdReceived.text & "]"

ElseIf (StrComp(str, "QF3") = 0) Then
 cmdSent.text = "QF3"
 WaitSeconds (0.3)
 sock_send.SendData "[" & cmdReceived.text & "]"

ElseIf (StrComp(str, "F1B1") = 0) Then
 cmdSent.text = "F1B1"
 WaitSeconds (2)
 cmdSent.text = "F1X1"
 WaitSeconds (2)

ElseIf (StrComp(str, "F1B0") = 0) Then
 cmdSent.text = "F1B0"
 WaitSeconds (2)
 cmdSent.text = "F1X1"
 WaitSeconds (2)

ElseIf (StrComp(str, "F1PV") = 0) Then
 cmdSent.text = "F1PV"
 WaitSeconds (2)
 cmdSent.text = "F1X1"
 WaitSeconds (2)

ElseIf (StrComp(str, "F1PH") = 0) Then
 cmdSent.text = "F1PH"
 WaitSeconds (2)
 cmdSent.text = "F1X1"
 WaitSeconds (2)

ElseIf (StrComp(str, "QA") = 0) Then
 cmdSent.text = "QA"
 WaitSeconds (0.3)
 sock_send.SendData "[" & cmdReceived.text & "]"

ElseIf (StrComp(str, "QR") = 0) Then
 cmdSent.text = "QR"
 WaitSeconds (0.3)
Appendix II – Antenna control unit source code

sock_send.SendData "\" & cmdReceived.text & "\"

ElseIf (StrComp(str, "QL") = 0) Then
 cmdSent.text = "QL"
 WaitSeconds (0.3)
 sock_send.SendData "\" & cmdReceived.text & "\"

ElseIf (InStr(str, "SETPOS") > 0) Then
 posAz = Mid$(str, 8, 5)
 posEl = Mid$(str, 14, 5)
 Call Position_ant(posAz, posEl)

ElseIf (InStr(str, "AZ_SWEEP") > 0) Then
 startAz = Mid$(str, 10, 3)
 stopAz = Mid$(str, 14, 3)
 elevation = Mid$(str, 22, 3)
 stepAz = Mid$(str, 18, 3)
 intTimeAz = Mid$(str, 26, 3)
 directionAz = Mid$(str, 30, 1)
 Call Sweep_ant_az(startAz, stopAz, elevation, stepAz, intTimeAz, directionAz)

ElseIf (InStr(str, "EL_SWEEP") > 0) Then
 startEl = Mid$(str, 10, 3)
 stopEl = Mid$(str, 14, 3)
 azimuth = Mid$(str, 21, 3)
 stepEl = Mid$(str, 18, 2)
 intTimeEl = Mid$(str, 25, 3)
 Call Sweep_ant_el(startEl, stopEl, azimuth, stepEl, intTimeEl)

Else: sock_send.SendData "COMMAND ERROR"

End If

End Sub

Private Sub Form_Unload(Cancel As Integer)
 sock_receive.Close
 cmdSent.text = "E" "Close Accon
End Sub